Reactions of Zinc Enolates Derived from 1-Aryl-2-bromoalkanones with 3-Acyl-6-bromochromen-2-ones

V. V. Shchepin, A. E. Korzun, S. N. Shurov, and M. I. Vakhrin

Perm State University, ul. Bukireva 15, Perm, 614990 Russia

Received November 15, 2002

Abstract—Zinc enolates derived from 1-aryl-2-bromoalkanones react with 3-acyl-6-bromochromen-2-ones to give 3-acetyl(benzoyl)-6-bromo-4-(2-aryl-2-oxo-1-R-ethyl)chromen-2-ones as a single diastereoisomer.

In keeping with published data, 3-acylchromen-2-ones (3-acylcoumarins) are capable of taking up diethyl malonate, ethyl acetoacetate, and ethyl cyanoacetate at the double bond in the presence of bases [1]. We have found no published data on reactions of 3-acylchromen-2-ones with metal enolates derived from ketones. Our experiments showed that zinc enolates II obtained from 1-aryl-2-bromoalkanones I react with 3-acetyl- and 3-benzoyl-6-bromochromen-2-ones via regioselective attack on the C⁴ atom to give intermediate III; the subsequent hydrolysis affords 3-acetyl- and 3-benzoyl-6-bromo-4-(2-aryl-2-oxo-1-Rethyl)chroman-2-ones Va–Ve. The reaction occurs in

diethyl ether-ethyl acetate at the boiling point of the mixture.

The structure of compounds Va-Ve was proved by the data of elemental analysis and IR and NMR spectroscopy. The IR spectra of Va-Ve contained characteristic absorption bands at 1670, 1710, and 1770 cm⁻¹ due to stretching vibrations of the ketone and lactone carbonyl groups. The ¹H NMR spectral data indicate that compounds Va-Ve are formed as a single diastereoisomer which exists in the ketone form (K). However, in DMSO- d_6 we detected considerable amounts of two enol forms which may be denoted as E1 and E2. The ¹H NMR spectrum of 3-acetyl-6-

Scheme 1.

H O H

I, II, $R^1 = Me$, Ar = Ph (a), $4-ClC_6H_4$ (b), $4-BrC_6H_4$ (c); $R^1 = Et$, Ar = Ph (d); III, $R^2 = Me$ (a), Ph (b); IV, V, $R^1 = R^2 = Me$, Ar = Ph (a), $4-ClC_6H_4$ (b), $4-BrC_6H_4$ (c); $R^1 = Et$, $R^2 = Me$, $R^2 = Ph$ (d); $R^1 = Me$, $R^2 = Ph$,

bromo-4-(2-oxo-2-phenyl-1-methylethyl)chroman-2-one (**Va**), apart from signals belonging to the aromatic protons, contained the following signals (DMSO- d_6 – CCl₄, 1:3), δ , ppm: K, 46%: 1.15 d (3H, CH**Me**), 2.25 s (3H, COMe), 3.70–3.80 m (1H, C**H**Me), 3.90 d (1H, C**H**CHCOMe), 3.94 s (1H, C**H**COMe); E1, 25%: 1.02 d (3H, CH**Me**), 2.12 s (3H, MeC=C), 3.70–3.80 m (1H, C**H**Me), 4.11 d (1H, CHC=C), 12.46 s (1H, OH); E2, 29%: 0.95 d (3H, CH**Me**), 2.30 s (3H, MeC=C), 3.70–3.80 m (1H, C**H**Me), 4.48 d (1H, CHC=C, J = 3 Hz), 11.14 s (1H, OH). We failed to unambiguously determine the structure of the enol tautomers.

It should be noted that the 3-H signal in the ¹H NMR spectra of compounds Va-Vc and Ve, recorded at 60 MHz (RYa-2310), is a singlet, while the corresponding signal in the spectrum of Vd, recorded at 500 MHz (Bruker DRX) appears as a doublet with a coupling constant $J_{3,4}$ of 1.5 Hz. In order to rationalize these results, we performed quantum-chemical calculations (SCF MO LCAO, MNDO-PM3 [2]) of the bond lengths, bond and dihedral angles, and enthalpies of formation ($\Delta H_{\rm f}$) of isomeric structures of 3-acetyl-6-bromo-4-(1-benzoylpropyl)chroman-2-one (**Vd**). Compounds **V** possess three chiral centers: C^3 and C⁴ atoms in the pyran ring and the exocyclic carbon atom (C^{α}); therefore, eight stereoisomeric structures are possible. Each stereoisomer should be characterized by its own value of the dihedral angle HC³C⁴H (φ) and hence by a specific vicinal coupling constant $J_{3,4}$ in the ¹H NMR spectrum.

PhCO
$$\stackrel{H}{=}$$
 Et $\stackrel{H}{=}$ COPh $\stackrel{H}{=}$ H $\stackrel{H}{=}$ COMe $\stackrel{G}{=}$ \stackrel{G}

According to the calculations, the most stable are stereoisomers **A** and **B** having (3R,4S) configuration. This follows from analysis of the $\Delta H_{\rm f}$ values. The configuration of C^{α} only slightly affects the enthalpy of formation. The calculated dihedral angles φ in isomers **A** and **B** are 81.3 and 78.8°, respectively. The corresponding coupling constants $J_{3,4}$, calculated according to the Karplus equation using the Bothner-By parameters [3], are 2.1 and 2.2 Hz. The other stereoisomers

of **Vd** are characterized by different dihedral angles φ , and the corresponding coupling constants $J_{3,4}$ range from 4.4 to 11.8 Hz. In the experimental high-resolution ¹H NMR spectra, the 3-H signal is a doublet with a coupling constant $J_{3,4}$ of 1.5 Hz, which suggests a weak interaction with the 4-H proton. Such interaction is possible only in stereoisomers **A** and **B**.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrometer from samples dispersed in mineral oil. The ¹H NMR spectra of compounds **Va–Vc** and **Ve** were obtained from solutions in CDCl₃ on an RYa-2310 spectrometer (60 MHz) using HMDS as internal reference. The ¹H NMR spectra of **Va–Vc** and **Ve** in DMSO-*d*₆–CCl₄ (1:3) and of **Vd** in DMSO-*d*₆ were also measured on a Bruker DRX instrument operating at 500 MHz with TMS as internal reference. Quantum-chemical calculations were performed on a Pentium-200 MMX computer using MOPAC 7.0 software package [4].

3-Acyl-6-bromo-(2-aryl-2-oxo-1-R-ethyl)chroman-2-ones Va-Ve. To a mixture of 3 g of zinc prepared as fine turnings, 7 ml of diethyl ether, and 7 ml of ethyl acetate we added 0.007 mol of 3-acetyl- or 3-benzoyl-6-bromochromen-2-one IIIa or IIIb and 0.001 mol of 1-aryl-2-bromoalkanone **Ia-Id**. The mixture was heated to initiate the reaction which then occurred spontaneously. When the reaction was complete, the mixture was heated for 15 min under reflux, cooled, treated with 10% hydrochloric acid, and extracted with diethyl ether. The organic phase was separated, washed with a solution of sodium hydrogen carbonate until neutral reaction, and dried over sodium sulfate. The solvent was distilled off, and the products were purified by double recrystallization from methanol.

3-Acetyl-6-bromo-4-(1-methyl-2-oxo-2-phenyl-ethyl)chroman-2-one (**Va**). Yield 40%, mp 115–118°C. ¹H NMR spectrum, δ, ppm: in CDCl₃: 1.10 d (3H, CH**Me**), 2.17 s (3H, COMe), 3.40–4.00 m (1H, C**H**Me), 3.78 s (2H, CHCH), 6.80–8.00 m (8H, H_{arom}); in DMSO-*d*₆–CCl₄ (1:3): 1.15 d (3H, CH**Me**), 2.25 s (3H, COMe), 3.70–3.80 m (1H, C**H**Me), 3.90 d (1H, C**H**CHCOMe), 3.94 s (1H, C**H**COMe) (K, 46%); 1.02 d (3H, CH**Me**), 2.12 s (3H, MeC=C), 3.70–3.80 m (1H, C**H**Me), 4.11 d (1H, CHC=C), 12.46 s (1H, OH) (E1, 25%); 0.95 d (3H, CH**Me**), 2.30 s (3H, MeC=C), 3.70–3.80 m (1H, C**H**Me), 4.48 d (1H, CHC=C, *J* = 3 Hz), 11.14 s (1H, OH) (E2, 29%); 6.85–

8.05 m (8H, H_{arom}). Found, %: C 59.69; H 4.15; Br 19.75. C₂₀H₁₇BrO₄. Calculated, %: C 59.87; H 4.27; Br 19.91.

3-Acetyl-6-bromo-4-[2-(4-chlorophenyl)-1-methyl-2-oxoethyl]chroman-2-one (**Vb**). Yield 65%, mp 145–147°C. ¹H NMR spectrum, δ, ppm: in CDCl₃: 1.10 d (3H, CH**Me**), 2.18 s (3H, COMe), 3.40–4.00 m (1H, C**H**Me), 3.78 s (2H, CHCH), 6.80–8.00 m (7H, H_{arom}); in DMSO-*d*₆–CCl₄ (1:3): 1.13 d (3H, CH**Me**), 2.25 s (3H, COMe), 3.70–3.80 m (1H, C**H**Me), 3.89 d (1H, C**H**CHCOMe), 3.95 s (1H, C**H**COMe) (K, 42%); 1.02 d (3H, CH**Me**), 2.12 s (3H, MeC=C), 3.72–3.82 m (1H, C**H**Me), 4.11 d (1H, CHC=C), 12.48 s (1H, OH) (E1, 26%); 0.96 d (3H, CH**Me**), 2.30 s (3H, MeC=C), 3.72–3.82 m (1H, C**H**Me), 4.44 d (1H, CHC=C, *J* = 3 Hz), 11.18 s (1H, OH) (E2, 32%); 6.85–8.05 m (7H, H_{arom}). Found, %: C 55.04; H 3.61. C₂₀H₁₆BrClO₄. Calculated, %: C 55.13; H 3.70.

3-Acetyl-6-bromo-4-[2-(4-bromophenyl)-1methyl-2-oxoethyl]chroman-2-one (Vc). Yield 67%, mp 146–148°C. ¹H NMR spectrum, δ, ppm: in CDCl₃: 1.08 d (3H, CH**Me**), 2.20 s (3H, COMe), 3.25–4.00 m (1H, CHMe), 4.03 s and 4.20 s (2H, CHCH), 6.80-8.00 m (7H, H_{arom}); in DMSO- d_6 -CCl₄ (1:3): 1.13 d (3H, CHMe), 2.25 s (3H, COMe), 3.70–3.80 m (1H, CHMe), 3.90 d (1H, CHCHCOMe), 3.95 s (1H, CHCOMe) (K, 44%); 1.02 d (3H, CHMe), 2.14 s (3H, MeC=C), 3.70-3.80 m (1H, CHMe), 4.11 d (1H, CHC=C), 12.48 s (1H, OH) (E1, 24%); 0.95 d (3H, CHMe), 2.30 s (3H, MeC=C), 3.70-3.80 m (1H, **CH**Me), 4.43 d (1H, CHC=C, J = 3 Hz), 11.20 s (1H, OH) (E2, 32%); 6.85–8.05 m (7H, H_{arom}). Found, %: C 49.90; H 3.28; Br 33.08. C₂₀H₁₆Br₂O₄. Calculated, %: C 50.03; H 3.36; Br 33.28.

3-Acetyl-4-(1-benzoylpropyl)-6-bromochroman-2-one (**Vd**). Yield 42%, mp 115–118°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 0.80 t (3H, CH₂Me), 1.30–1.80 m (2H, CH₂Me), 3.55–3.75 m (1H, CHCH₂),

3.89 d (1H, CHCHCOMe), 3.90 s (1H, CHCOMe) (K, 44%); 0.72 t (3H, CH₂Me), 1.30–1.80 m (2H, CH₂Me), 2.09 s (3H, MeC=C), 3.55–3.75 m (1H, CHCH₂), 4.04 d (1H, CHC=C), 12.27 s (1H, OH) (E1, 28%); 0.72 t (3H, CH₂Me), 1.30–1.80 m (2H, CH₂Me), 2.22 s (3H, MeC=C), 3.55–3.75 m (1H, CHCH₂), 4.37 d (1H, CHC=C, *J* = 4 Hz), 11.00 br.s (1H, OH) (E2, 28%); 6.80–8.00 m (8H, H_{arom}). Found, %: C 60.55; H 4.54; Br 19.06. C₂₁H₁₉BrO₄. Calculated, %: C 60.74; H 4.61; Br 19.24.

3-Benzoyl-6-bromo-4-[2-(4-bromophenyl)-1-methyl-2-oxoethyl]chroman-2-one (**Ve**). Yield 75%, mp 185–187°C. ¹H NMR spectrum, δ, ppm: in CDCl₃: 1.08 d (3H, CH**Me**), 3.25–4.00 m (1H, C**H**Me), 3.66 s and 4.62 s (2H, CHCH), 6.90–8.10 m (13H, H_{arom}); in DMSO-*d*₆–CCl₄ (1:3): 1.21 d (3H, CH**Me**); 3.76 d (1H, C**H**CHCOPh); 3.90 m (1H, C**H**Me); 4.83 s (1H, C**H**COPh); 7.07 d, 7.26 s, and 7.45 d (3H, C₆H₃); 7.57 t, 7.67 t, and 7.69 d (5H, Ph); 7.98 d and 8.07 d (4H, 4-BrC₆H₄). Found, %: C 55.28; H 3.28; Br 29.31. C₂₅H₁₈Br₂O₄. Calculated, %: C 55.38; H 3.35; Br 29.47.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 04-03-9603).

REFERENCES

- 1. Heterocyclic Compounds, Elderfield, R.C., Ed., New York: Wiley, 1952, vol. 2. Translated under the title Geterotsiklicheskie soedineniya, Moscow: Inostrannaya Literatura, 1954, vol. 2, p. 153.
- 2. Stewart, J.J.P., J. Comput. Chem., 1989, vol. 10, p. 209.
- 3. Gordon, A.J. and Ford, R.A., *The Chemist's Companion*, New York: Wiley, 1972. Translated under the title *Sputnik khimika*, Moscow: Mir, 1976, p. 297.
- 4. Stewart, J.J.P., *MOPAC 7.0*, Frank J. Sailor Res. Lab., US Air Force Academy, QCPM 175.